Debugging Bison/Yacc Grammars

Inevitably when you write Bison/Yacc grammars you will run into a grammatical errors. In this case the grammar was my LBNF grammar (Fortran.cf, Fortran.y, Fortran.l) for Fortran and I’m running the terminal.for module from the old Galaxy program through my ‘go’ script (current files: debugging.7z). Here’s the terminal output from my script run. Interspersed with the output from my echo statements are the outputs from the various programs run (including Bison/Yacc):

alan@Midnight$ ./go terminal.for  -d
--- Arguments ---
fpgm='terminal.for'
flag='-d'
extn='for'
fn='terminal'
--- Clean up ---
--- Compiling LBNF grammar with BNFC ---

148 rules accepted

no change to file ./Absyn.h
no change to file ./Absyn.c
writing file ./Fortran.l (saving old file as ./Fortran.l.bak)
writing file ./Fortran.y (saving old file as ./Fortran.y.bak)
writing file ./Parser.h (saving old file as ./Parser.h.bak)
no change to file ./Skeleton.h
no change to file ./Skeleton.c
no change to file ./Printer.h
no change to file ./Printer.c
no change to file ./Test.c
writing file ./Makefile (saving old file as ./Makefile.bak)
--- Cleaning symbols ---
--- Turning on Debug in Makefile ---
--- Makefile ---
    5c5
    < FLEX_OPTS = -PFortran --debug
    ---
    > FLEX_OPTS = -PFortran
    8c8
    < BISON_OPTS = -t -pFortran --debug -r all -g
    ---
    > BISON_OPTS = -t -pFortran
--- Fixup generated BNF Lexical Analyser ---
--- Show differences: Fortran.l ---
    34c34,35
    < "\n"       { ++yy_mylinenumber; return T_NEWLINE; };
    ---
    > "
    > "        return T_NEWLINE;
    91c92,93
    < [ \t\r]+        /* ignore white space. */;
    ---
    > \n ++yy_mylinenumber ;
    > [ \t\r\n\f]        /* ignore white space. */;
--- Making ---
flex -PFortran --debug -oLexer.c Fortran.l
gcc -g -W -Wall -c Lexer.c
Lexer.c:2053:16: warning: ‘input’ defined but not used [-Wunused-function]
     static int input  (void)
                ^~~~~
Lexer.c:2002:17: warning: ‘yyunput’ defined but not used [-Wunused-function]
     static void yyunput (int c, char * yy_bp )
                 ^~~~~~~
bison -t -pFortran --debug -r all -g Fortran.y -o Parser.c
Fortran.y: warning: 2 shift/reduce conflicts [-Wconflicts-sr]
Fortran.y: warning: 12 reduce/reduce conflicts [-Wconflicts-rr]
gcc -g -W -Wall -c Parser.c
gcc -g -W -Wall -c Test.c
Linking TestFortran...
gcc -g -W -Wall Absyn.o Lexer.o Parser.o Printer.o Test.o -o TestFortran
=========================================
--- Cleaning of input Fortran program ---
Counts:
  Comments:         45
  Continuations:     0
--- Compiling input Fortran program ---
--- Output in TestFortran.out ---
--(end of buffer or a NUL)
--accepting rule at line 86 ("// ESCAPE CHARACTER
")
--accepting rule at line 86 ("//
")
--accepting rule at line 86 ("//*********  TERMINAL CONTROL ROUTINES  **************
")
--accepting rule at line 86 ("//
")
--accepting rule at line 86 ("//  A TERMINAL WITH CURSOR POSITIONING AND CLEAR SCREEN IS REQUIRED
")
--accepting rule at line 86 ("//
")
--accepting rule at line 86 ("//  MODIFY GTCHAR, TPOS, AND CLEAR FOR YOUR TERMINAL(S)
")
--accepting rule at line 86 ("//
")
--accepting rule at line 86 ("//****************************************************
")
--accepting rule at line 86 ("//
")
--accepting rule at line 86 ("//  BY WILLIAM WOOD, SEPTEMBER 1980
")
--accepting rule at line 86 ("//
")
--accepting rule at line 86 ("//
")
--accepting rule at line 86 ("// Modified by Stuart Renes, WeCo, July 20th, 1981
")
--accepting rule at line 86 ("// to add Vt52 support and make ADM-3A /FT1 type.
")
--accepting rule at line 86 ("//
")
--accepting rule at line 86 ("// Added ADDS 520/580 support on August 14th, 1981 as
")
--accepting rule at line 86 ("// /FT2 type.
")
--accepting rule at line 86 ("//
")
--accepting rule at line 86 ("//   TPOS - PUT CHARS IN BUF TO POSITION CURSOR AT IROW, ICOL
")
--accepting rule at line 86 ("// WPW 9/19/80
")
--accepting rule at line 91 ("      ")
--accepting rule at line 82 ("SUBROUTINE")
--accepting rule at line 91 (" ")
--accepting rule at line 87 ("TPOS")
--accepting rule at line 35 ("(")
--accepting rule at line 87 ("IROW")
--accepting rule at line 39 (",")
--accepting rule at line 91 (" ")
--accepting rule at line 87 ("ICOL")
--accepting rule at line 37 (")")
")accepting rule at line 91 ("
--accepting rule at line 34 ("
")
--accepting rule at line 91 ("      ")
--accepting rule at line 61 ("COMMON")
--accepting rule at line 42 ("/")
--accepting rule at line 87 ("CURSOR")
--accepting rule at line 42 ("/")
--accepting rule at line 87 ("TTYPE")
")accepting rule at line 91 ("
--accepting rule at line 34 ("
")
--accepting rule at line 91 ("      ")
--accepting rule at line 74 ("INTEGER")
--accepting rule at line 91 (" ")
--accepting rule at line 87 ("TTYPE")
")accepting rule at line 91 ("
--accepting rule at line 34 ("
")
--accepting rule at line 91 ("      ")
--accepting rule at line 57 ("BYTE")
--accepting rule at line 91 (" ")
--accepting rule at line 87 ("ADMV")
--accepting rule at line 35 ("(")
--accepting rule at line 90 ("2")
--accepting rule at line 37 (")")
--accepting rule at line 39 (",")
--accepting rule at line 91 (" ")
--accepting rule at line 87 ("VT100V")
--accepting rule at line 35 ("(")
--accepting rule at line 90 ("2")
--accepting rule at line 37 (")")
--accepting rule at line 39 (",")
--accepting rule at line 91 (" ")
--accepting rule at line 87 ("vt52v")
--accepting rule at line 35 ("(")
--accepting rule at line 90 ("2")
--accepting rule at line 37 (")")
--accepting rule at line 39 (",")
--accepting rule at line 91 (" ")
--accepting rule at line 87 ("addsv")
--accepting rule at line 35 ("(")
--accepting rule at line 90 ("2")
--accepting rule at line 37 (")")
")accepting rule at line 91 ("
--accepting rule at line 34 ("
")
--accepting rule at line 91 ("      ")
--accepting rule at line 77 ("PARAMETER")
--accepting rule at line 91 (" ")
--accepting rule at line 87 ("ADM3A")
--accepting rule at line 91 (" ")
--accepting rule at line 40 ("=")
--accepting rule at line 91 (" ")
--accepting rule at line 90 ("1")
")accepting rule at line 91 ("
--accepting rule at line 34 ("
")
--accepting rule at line 91 ("      ")
--accepting rule at line 77 ("PARAMETER")
--accepting rule at line 91 (" ")
--accepting rule at line 87 ("VT100")
--accepting rule at line 91 (" ")
--accepting rule at line 40 ("=")
--accepting rule at line 91 (" ")
--accepting rule at line 90 ("2")
")accepting rule at line 91 ("
--accepting rule at line 34 ("
")
--accepting rule at line 91 (" ")
--accepting rule at line 87 ("parameter")
--accepting rule at line 91 (" ")
--accepting rule at line 87 ("vt52")
error: line 28: syntax error at vt52
alan@Midnight$

The important part for this post are the lines:

bison -t -pFortran --debug -r all -g Fortran.y -o Parser.c
Fortran.y: warning: 2 shift/reduce conflicts [-Wconflicts-sr]
Fortran.y: warning: 12 reduce/reduce conflicts [-Wconflicts-rr]

This tells us there are two types of errors occuring shift/reduce and reduce/reduce which prevents Bison/Yacc from creating a parser. There can be other types of errors, such as gramatical errors, which will only be discovered by thorough testing.

Understanding the errors

To understand exactly what shift/reduce and reduce/reduce errors a compiler course which includes the theory of LR parsers would be handy. However, the quick explanation is that as Bison/Yacc tries to find a complete rule in your grammar it shifts (lexical and rule) tokens onto the stack until it finds the last token in the rule then Bison/Yacc reduces (removes) all the tokens on the stack corresponding to that rule and replaces them with a single token of that rule type. Essentially it is building the AST (Abstract Synatx Tree) representation of the program being compiled.

To solve these types of errors we look at the Parser.output file which contains the output of the run of Bison/Yacc. This file contains a number of sections:

  • Error list
  • Abbreviated grammar
  • Terminal (leaf) nodes in the AST
  • Non-Terminal (internal) nodes in the AST
  • The generated grammar states.

The Error list just lists all the shift/reduce and reduce/reduce errors that need to be fixed before a working parser is generated. The Abbreviated grammar shows the raw grammar without any adornments that go along with the grammar (like your C-code). This abbreviated grammar is usually easier to read once the parser file becomes filled in.

The Terminal (leaf) node list gives a cross reference to the rules in the Abbreviated grammar where that terminal node appears. The first number in each line, in brackets (), is the token ID of the token (the lexer and parser use this number to communicate the token).

The Non-Terminal node list again has a node ID in brackets() and then lists all the grammar rules that contain that node on either the right-hand-side(output) or the left-hand-side(input).

The Generated grammar states are created corresponding to a NFA (Non-deterministic Finite Atomaton) which is like a DFA (Deterministic FA) but will take into account the Bison/Yacc grammar doesn’t always have a terminal token at each location. For instance in the following grammar line when the parser tries to parse a ‘statement’ it has three (in this case) statements that it can follow. In a DFA it needs a terminal-token (e.g. ‘a’,’b’,’c’, … , ‘(‘, ‘)’ etc to make a decision on which rule to follow. What a NFA does is just follows all the possibilities until it finds a terminal token :

statement := dimension_statement | for_statement | assignment_statement

The gist of this is that the generated states in the Parser.output file will look very dissimilar to any one of your rules (usually). They will be, instead, a collection of your rules. Here is the generated state 2 from my grammar:

State 2

    1 Program: ListLblStm .  [$end]
    3 ListLblStm: ListLblStm . LblStm T_NEWLINE
    4 LblStm: . Labeled_stm
    5       | . Simple_stm
    6       | . %empty  [T_NEWLINE]
    7 Labeled_stm: . _INTEGER_ Simple_stm
    8 Simple_stm: . T_IMPL Type_Spec Type_Qual T_LPAREN T_NAME T_MINUS T_NAME T_RPAREN
    9           | . T_PARM ListNameValue
   10           | . T_DIMS ListNameDim
   11           | . Type_Spec Type_Qual ListNameDim
   12           | . Type_Spec ListNameDim
   13           | . T_DATA ListDataSeg
   14           | . T_COMM T_DIV T_NAME T_DIV ListName
   15           | . T_WRITE T_LPAREN ListAssignName T_RPAREN
   16           | . T_WRITE T_LPAREN ListAssignName T_RPAREN ListNameOrArray
   17           | . T_FMT T_LPAREN ListFmtSpecs T_RPAREN
   18           | . T_READ T_LPAREN ListAssignName T_RPAREN ListNameOrArray
   19           | . T_READ T_EQUALS LExp
   20           | . T_IF T_LPAREN LExp T_RPAREN IfThenPart
   21           | . T_NAME T_EQUALS LExp
   22           | . T_NAME T_LPAREN ListLExp T_RPAREN T_EQUALS LExp
   23           | . T_CALL T_NAME T_LPAREN ListSpecLExp T_RPAREN
   24           | . T_CALL T_NAME
   25           | . T_GO T_TO _INTEGER_
   26           | . T_OPEN T_LPAREN ListAssignName T_RPAREN
   27           | . T_CLOSE T_LPAREN ListAssignName T_RPAREN
   28           | . T_DO _INTEGER_ DoRangePart
   29           | . T_STOP
   30           | . T_STOP T_SQSTR
   31           | . T_END
   32           | . T_SUBR T_NAME T_LPAREN ListSpecLExp T_RPAREN
   33           | . T_SUBR T_NAME
   34           | . T_FUNC T_NAME T_LPAREN ListSpecLExp T_RPAREN
   35           | . T_FUNC T_NAME
   36           | . T_CONT
   37           | . T_RTN
   38           | . T_EQU T_LPAREN T_NAME T_COMMA NameOrArrRef T_RPAREN
  143 Type_Spec: . T_INT
  144          | . T_REAL
  145          | . T_DBL
  146          | . T_CHAR
  147          | . T_BYTE
  148          | . T_LOGI

    T_BYTE     shift, and go to state 4
    T_CALL     shift, and go to state 5
    T_CHAR     shift, and go to state 6
    T_CLOSE    shift, and go to state 7
    T_COMM     shift, and go to state 8
    T_CONT     shift, and go to state 9
    T_DATA     shift, and go to state 10
    T_DIMS     shift, and go to state 11
    T_DO       shift, and go to state 12
    T_DBL      shift, and go to state 13
    T_END      shift, and go to state 14
    T_EQU      shift, and go to state 15
    T_FMT      shift, and go to state 16
    T_FUNC     shift, and go to state 17
    T_GO       shift, and go to state 18
    T_IF       shift, and go to state 19
    T_IMPL     shift, and go to state 20
    T_INT      shift, and go to state 21
    T_LOGI     shift, and go to state 22
    T_OPEN     shift, and go to state 23
    T_PARM     shift, and go to state 24
    T_READ     shift, and go to state 25
    T_REAL     shift, and go to state 26
    T_RTN      shift, and go to state 27
    T_STOP     shift, and go to state 28
    T_SUBR     shift, and go to state 29
    T_WRITE    shift, and go to state 30
    T_NAME     shift, and go to state 31
    _INTEGER_  shift, and go to state 32

    T_NEWLINE  reduce using rule 6 (LblStm)
    $default   reduce using rule 1 (Program)

    LblStm       go to state 33
    Labeled_stm  go to state 34
    Simple_stm   go to state 35
    Type_Spec    go to state 36

In the numbered lines at the top corresponding to our grammar the period ‘.’ corresponds to the location in all those rules that is the current position of parsing. Thus in lines 8-32 we are in the Simple_stm: part of our grammar waiting to get the first token of a new statement. If we get a T_WRITE token then two rules (15,16) will correspond. If we then go down to the next section which shows what we do when we get various tokens we see that a T_WRITE leads us to state 30 where we will process the next tokens from a write statement (e.g “WRITE(1, 13) (ISCORE(I), I = 1, 8)” ).

Shift/Reduce and Reduce/Reduce errors

So now lets look at the two types of errors shift/reduce and reduce/reduce errors in my program and go through the debugging process.

The shift/reduce error then is when Bison/Yacc can’t decide whether to shift the next token onto the stack (for instance when we are in the middle of a statement) or remove a set of tokens and replace them with a single token (like when a statement has been completely parsed). Here is the top of my Parser.output file:

Terminals unused in grammar

   _ERROR_


State 174 conflicts: 1 shift/reduce
State 178 conflicts: 3 reduce/reduce
State 226 conflicts: 3 reduce/reduce
State 227 conflicts: 3 reduce/reduce
State 228 conflicts: 1 shift/reduce, 3 reduce/reduce

Error “State 174 conflicts: 1 shift/reduce”

First lets look at the “State 174 conflicts: 1 shift/reduce” error. Going down to “State 174” in this file we find:

State 174

   90 LExp: . LExp T_OR LExp2
   91     | . LExp T_AND LExp2
   92     | . LExp2
   93 LExp2: . LExp2 T_EQ LExp3
   94      | . LExp2 T_NE LExp3
   95      | . LExp3
   96 LExp3: . LExp3 T_LT LExp4
   97      | . LExp3 T_GT LExp4
   98      | . LExp3 T_LE LExp4
   99      | . LExp3 T_GE LExp4
  100      | . LExp4
  101 LExp4: . LExp4 T_PLUS LExp5
  102      | . LExp4 T_MINUS LExp5
  103      | . LExp5
  104 LExp5: . LExp5 T_MULT LExp6
  105      | . LExp5 T_DIV LExp6
  106      | . LExp6
  107 LExp6: . Unary_operator LExp7
  108      | . LExp7
  109 LExp8: . LExp5 T_POW LExp8
  110      | . LExp8 T_LPAREN T_RPAREN
  110      | LExp8 T_LPAREN . T_RPAREN
  111      | . LExp8 T_LPAREN ListSpecLExp T_RPAREN
  111      | LExp8 T_LPAREN . ListSpecLExp T_RPAREN
  112      | . LExp9
  113 LExp9: . TIntVar RangePart
  114      | . T_SQSTR
  115      | . LExp10
  118 TIntVar: . _INTEGER_
  119        | . T_TRUE
  120        | . T_FALSE
  121        | . T_NAME
  122        | . T_READ
  125 LExp7: . LExp8
  126 LExp10: . LExp11
  127 LExp11: . T_LPAREN LExp T_RPAREN
  128 Unary_operator: . T_PLUS
  129               | . T_MINUS
  130               | . T_NOT
  131 ListSpecLExp: . SpecLExp
  132             | . SpecLExp T_COMMA ListSpecLExp
  133 SpecLExp: . %empty  [T_RPAREN, T_COMMA]
  134         | . LExp

    T_LPAREN   shift, and go to state 93
    T_MINUS    shift, and go to state 94
    T_RPAREN   shift, and go to state 229
    T_PLUS     shift, and go to state 95
    T_TRUE     shift, and go to state 96
    T_FALSE    shift, and go to state 97
    T_NOT      shift, and go to state 98
    T_READ     shift, and go to state 99
    T_NAME     shift, and go to state 100
    T_SQSTR    shift, and go to state 101
    _INTEGER_  shift, and go to state 102

    T_RPAREN  [reduce using rule 133 (SpecLExp)]
    $default  reduce using rule 133 (SpecLExp)

    LExp            go to state 129
    LExp2           go to state 104
    LExp3           go to state 105
    LExp4           go to state 106
    LExp5           go to state 107
    LExp6           go to state 108
    LExp8           go to state 109
    LExp9           go to state 110
    TIntVar         go to state 111
    LExp7           go to state 112
    LExp10          go to state 113
    LExp11          go to state 114
    Unary_operator  go to state 115
    ListSpecLExp    go to state 230
    SpecLExp        go to state 131

The second section were Bison/Yacc show the SHIFTs and REDUCEs it wants to do you can see two lines that define the problem:

    T_RPAREN   shift, and go to state 229
              ...
    T_RPAREN  [reduce using rule 133 (SpecLExp)]

The parser wants to both SHIFT and REDUCE at this state when it gets a T_RPAREN or ‘)’. So now we have to go through our grammar (at the top of this state) to determine where we see a period ‘.’ followed directly by a T_RPAREN. There are two places (grammar lines 110 and 133). In line 110 :

  110      | LExp8 T_LPAREN . T_RPAREN
  133 SpecLExp: . %empty  [T_RPAREN, T_COMMA]

This is a good time to go back to our original grammar (Fortran.cf) and look a the code corresponding to these two rules:

Epower.      LExp8 ::= LExp5 "**" LExp8;
Efunk.       LExp8 ::= LExp8 "(" ")";
Efunkpar.    LExp8 ::= LExp8 "(" [SpecLExp] ")";
...
(:[]).   [SpecLExp] ::= SpecLExp ;
(:).     [SpecLExp] ::= SpecLExp "," [SpecLExp];

SpLExpNil. SpecLExp ::= ;
SpLExpNot. SpecLExp ::= LExp;

You will notice that the Efunk. and Efunkpar. rules are almost identical except the second one has a list of SpecLExp tokens. Going further down the grammar file we notice that the SpecLExp can be either NILL (SpLExpNil.) or an LExp (SpLExpNot.). This essentially means there is two ways to have an empty function call in this grammar so the parser doesn’t know if it should shift a “SpecLExp” token onto the stack or to reduce the LExp8 “(” “)” token sequence into a LExp8 token.

The solution, that I decided upon (there may be many ways to change the grammar to fix this problem) was to eliminate the 110 rule (Ffunk.). So I did that and recompiled and the “State 174” error disappeared (NOTE: The state names may change over compiles).

Error “State 178 conflicts: 3 reduce/reduce”

The solution to reduce/reduce errors is similar. In this case state 178 shows us:

State 178

  107 LExp6: Unary_operator LExp7 .  [T_NEWLINE, T_MINUS, T_RPAREN, T_MULT, T_COMMA, T_PLUS, T_DIV, T_OR, T_AND, T_EQ, T_NE, T_LT, T_GT, T_LE, T_GE, T_POW]
  108      | LExp7 .  [T_MULT, T_DIV, T_POW]

    T_MULT    reduce using rule 107 (LExp6)
    T_MULT    [reduce using rule 108 (LExp6)]
    T_DIV     reduce using rule 107 (LExp6)
    T_DIV     [reduce using rule 108 (LExp6)]
    T_POW     reduce using rule 107 (LExp6)
    T_POW     [reduce using rule 108 (LExp6)]
    $default  reduce using rule 107 (LExp6)

You will note here that the terminals T_MULT, T_DIV, and T_POW are all mentioned on two REDUCE lines each. These are the 3 reduce/reduce errors for this state. Looking at the BNFC grammar file (Fortran.cf) again we see what the problem is:

Elor.        LExp  ::= LExp ".OR." LExp2;
Eland.       LExp  ::= LExp ".AND." LExp2;
Eeq.         LExp2 ::= LExp2 ".EQ." LExp3;
Eneq.        LExp2 ::= LExp2 ".NE." LExp3;
Elthen.      LExp3 ::= LExp3 ".LT." LExp4;
Egrthen.     LExp3 ::= LExp3 ".GT." LExp4;
Ele.         LExp3 ::= LExp3 ".LE." LExp4;
Ege.         LExp3 ::= LExp3 ".GE." LExp4;
Eplus.       LExp4 ::= LExp4 "+" LExp5;
Eminus.      LExp4 ::= LExp4 "-" LExp5;
Etimes.      LExp5 ::= LExp5 "*" LExp6;
Ediv.        LExp5 ::= LExp5 "/" LExp6;
Epreop.      LExp6 ::= Unary_operator LExp7;
Epower.      LExp8 ::= LExp5 "**" LExp8;
Efunkpar.    LExp8 ::= LExp8 "(" [SpecLExp] ")";
Evar.        LExp9 ::= TIntVar RangePart ;
Estr.        LExp9 ::= SQString ;

ERangeNull. RangePart ::= ;
ERange.     RangePart ::= ":" TIntVar ;

ETInt.       TIntVar ::= Integer;
ETTrue.      TIntVar ::= ".TRUE.";
ETFalse.     TIntVar ::= ".FALSE.";
ETNameVar.   TIntVar ::= Name;
ETRead.      TIntVar ::= "READ";

(:[]).   [LExp] ::= LExp ;
(:).     [LExp] ::= LExp "," [LExp];

_. LExp   ::= LExp2 ;
_. LExp2  ::= LExp3 ;
_. LExp3  ::= LExp4 ;
_. LExp4  ::= LExp5 ;
_. LExp5  ::= LExp6 ;
_. LExp6  ::= LExp7 ;
_. LExp7  ::= LExp8 ;
_. LExp8  ::= LExp9 ;
_. LExp9  ::= LExp10 ;
_. LExp10 ::= LExp11 ;
_. LExp11 ::= "(" LExp ")" ;

OUnaryPlus.   Unary_operator ::= "+" ;
OUnaryMinus.  Unary_operator ::= "-" ;
OUnaryNot.    Unary_operator ::= ".NOT." ;

The chunk at the top of this listing shows the problem (the unary operators ‘+’, ‘-‘ and ‘.NOT.’ are the simple reason that this causes a problem in the lines “LExp? ::= LExp5 {*|/|** } … ” where Bison/Yacc doesn’t know whether to reduce as a Epreop. token or as a LExp7 token. The overarching problem is not the unary operator it is me being lazy about thinking how logical and arithmetic expressions should be expressed in the grammar … instead I just mushed everything together.

What this version of the grammar will do is create another type of error (for instance a coding error where logical expression like “.NOT. 6” is valid. This type of error would have to be detected with tests. For now I will just remove the unary operators and will fix the Logical/Arithmetic grammar error later.

Recompiling we see that removing the unary operator does fix the reduce/reduce error but also flags a number of tokens as unused:

Nonterminals useless in grammar

   Unary_operator

Terminals unused in grammar

   _ERROR_
   T_NOT

Rules useless in grammar

  143 Unary_operator: T_PLUS
  144               | T_MINUS
  145               | T_NOT

The rest of the error correction process is similar. In fact, looking at the remaining reduce/reduce and shift/reduce errors points to the same chunk of grammar. Therefore it appears my next job is to correct my grammar laziness.

So until I fix my grammar…

Debugging Bison/Yacc Grammars

Leave a Reply

Your email address will not be published. Required fields are marked *

Scroll to top